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Abstract— We investigated the use of B-spline spatial basis
functions to model continuous 3-D tracer distributions in cardiac
SPECT studies. This approach is motivated by goals of achieving
a well-posed image reconstruction problem and computational
efficiency. Uniform B-spline basis functions have the noteworthy
property that splines having larger spatial support can be com-
posed from a linear combination of splines having smaller support,
thus facilitating creation of a multiresolution spatial model. B-
splines can be evaluated quickly when calculating projection
data models or displaying reconstructed images, and there is
no image “blockiness” because B-splines yield a spatially con-
tinuous representation. We used trilinear B-splines to reconstruct
images for a 99mTc-sestamibi cardiac SPECT/CT patient study.
Attenuation and depth-dependent point response were modeled.
Spline coefficients were estimated by minimizing a least-squares
criterion by direct matrix inversion. Images were reconstructed
with use of (1) more-spatially-compact splines, (2) less-spatially-
compact splines, and (3) a multiresolution basis composed of more-
compact splines in the heart volume and less-compact splines
elsewhere. Image noise was reduced with use of less-compact or
multiresolution splines, and the multiresolution basis also yielded
good myocardial resolution. Encouraged by these results, we are
using multiresolution B-splines to analyze dynamic SPECT data
from rest/stress cardiac patient studies.

I. INTRODUCTION

WE investigated the use of multiresolution B-spline spa-
tial basis functions to model continuous 3-D tracer

distributions in cardiac single-photon emission computed to-
mography (SPECT) studies. This approach is motivated by
goals of achieving a well-posed image reconstruction problem
and computational efficiency. Use of splines and other “blob”-
like basis functions in tomographic image reconstruction has
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been an active area of research (e.g., [1]–[3]), as has been use
of multiresolution reconstruction grids (e.g., [4]).

Uniform B-spline basis functions can facilitate creation of a
well-posed inverse problem by providing a spatially continuous,
smooth representation of the image volume that is described
by a relatively small number of parameters. Local spatial
resolution (i.e., regularization) is specified explicitly by the
design of the B-spline basis.

Uniform B-spline basis functions also have the noteworthy
property that splines having larger spatial support can be
composed from a linear combination of splines having smaller
support, thus facilitating creation of a multiresolution spatial
model. B-splines can be evaluated quickly when calculating
projection data models or displaying reconstructed images,
and there is no image “blockiness” because B-splines yield a
spatially continuous representation.

We used trilinear B-splines to reconstruct images for a 99mTc-
sestamibi cardiac SPECT/CT patient study. Attenuation and
depth-dependent point response were modeled. Spline coeffi-
cients were estimated by minimizing a least-squares criterion by
direct matrix inversion. Images were reconstructed with use of
(1) more-spatially-compact splines, (2) less-spatially-compact
splines, and (3) a multiresolution basis composed of more-
compact splines in the heart volume and less-compact splines
elsewhere. Image noise was reduced with use of less-compact
or multiresolution splines, and the multiresolution basis also
yielded good myocardial resolution.

II. PROPERTIES OF UNIFORM B-SPLINES

The kth-order uniform B-spline basis function, Π∗k(x), is
the piecewise (k − 1)st-degree polynomial that is obtained by
convolving the rectangle function
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with itself k−1 times (Fig. 1). The Gaussian is obtained in the
limit as the order k approaches infinity. The function Π∗k(x)
has a support of width k, a standard deviation of

√

k/12, and
unit integral (i.e.,

∫

∞

−∞
Π∗k(x)dx = 1). A convenient analytical

expression for the kth-order uniform B-spline basis function is
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where
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is the one-sided linear basis function [5].
The appropriately scaled function having a support of width
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√
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1
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sinck(as) (Fig. 2).
The support of the kth-order uniform B-spline basis function
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can be doubled (Fig. 3) simply by taking a linear
combination of k + 1 shifted versions of itself [6]:
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Thus, in tomographic imaging the forward-projection matrix
for lower-resolution splines is just a linear combination of the
columns of a matrix for higher-resolution splines.

III. 99MTC-SESTAMIBI CARDIAC SPECT/CT
PATIENT STUDY

For computational simplicity, we used separable, trilinear B-
splines [i.e., products of the form Π∗2(x)Π∗2(y)Π∗2(z)] to
reconstruct images for a 99mTc-sestamibi cardiac SPECT/CT
patient study.

A. SPECT/CT Data Acquisition

Data were acquired with use of parallel-hole collimators on a
dual-head GE Millennium VH Hawkeye SPECT/CT scanner. A
30 min dynamic scan was performed, with the patient’s arms
down for comfort, subsequent to pharmacologically induced
stress as part of a rest/stress protocol. During the dynamic
scan, the gantry performed 24 360-degree rotations, acquiring
72 views per rotation at 1 sec per view. Projections at each view
were binned into 64×64 frames, with a bin size of 8.84 mm
× 8.84 mm. For purposes of this investigation, emission data
acquired about 2–30 min post-injection (i.e., during the last
22 rotations) were summed to obtain a static dataset. Images
were reconstructed from projections of the heart obtained in
64 (transverse) × 9 (axial) sub-frames of the 72 views, which
contained a total of about 6.8 million detected events (Fig. 4).
An X-ray CT scan was performed with use of the integrated
Hawkeye system to obtain an attenuation map (Fig. 5).

B. Higher-Resolution, Lower-Resolution, and Multiresolution

B-Spline Image Space Models

A higher-resolution model for image space, based on more-
spatially-compact B-splines, was obtained by first thresholding
the attenuation map to obtain a mask for the patient’s body
and the bed. The volume encompassed by the mask was then
spanned by 7659 overlapping trilinear B-splines organized on
a 63×63×5 rectangular grid having a spacing of 8.84 mm ×

8.84 mm × 17.7 mm along the x-, y-, and z-axes, respectively,
where x and y are transverse coordinates and z is the axial

Fig. 1. The kth-order uniform B-spline is obtained by convolving the rectangle
function with itself k − 1 times.

Fig. 2. Spatial frequency responses for 1-D uniform B-splines.

Fig. 3. Doubling the support of uniform B-splines via equation (4), in which
k + 1 weighted and shifted versions of Π∗k(x) (solid curves) are summed to
obtain 1

2
Π∗k

`

x

2

´

(dashed curves).
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Fig. 4. Anterior view of summed late projection data from a 99mTc-
sestamibi cardiac SPECT patient study. The volume between the gray lines
was reconstructed.

Fig. 5. Smoothed attenuation map for a transverse mid-ventricular slice
acquired by the integrated Hawkeye X-ray CT system.

coordinate. The overlapping splines had a support of 17.7 mm
× 17.7 mm × 35.4 mm along x, y, and z, respectively.

A lower-resolution spatial model based on less-spatially-
compact B-splines was then obtained by doubling the trans-
verse support of the higher-resolution splines (Fig. 3) and
downsampling in the transverse plane. This yielded a total of
2201 overlapping trilinear B-splines organized on a 31×31×5
rectangular grid having a spacing of 17.7 mm × 17.7 mm
× 17.7 mm along x, y, and z, respectively. The overlapping
splines had a support of 35.4 mm × 35.4 mm × 35.4 mm along
x, y, and z, respectively.

Finally, a multiresolution spatial model was obtained by
replacing a 6×6×5 neighborhood of lower-resolution splines
that spanned the heart volume with an 11×11×5 neighborhood
of higher-resolution splines, to obtain a total of 2626 spatial
basis functions (Fig. 6). Fig. 7 shows the multiresolution
SPECT image reconstructed for the transverse mid-ventricular
slice corresponding to Fig. 5 (details of the reconstruction
methods and additional results follow).

Fig. 6. Depiction of spatial scales for higher- and lower-resolution components
of multiresolution trilinear B-spline basis functions, relative to the SPECT
detector bins. Dashed lines indicate splines that provide a smooth transition
between higher- and lower-resolution components.

Fig. 7. Multiresolution SPECT image reconstructed for the transverse mid-
ventricular slice corresponding to Fig. 5. The box outlines the higher-resolution
component of the image.

C. Projection Data Models, Least-Squares Minimization, and

Reconstructed Images

For the higher-resolution spatial basis, a system model that
related spatial spline intensities to detected events was calcu-
lated with use of a ray-driven projector [7] that modeled depth-
dependent collimator response, as well as attenuation based
on the measured attenuation map. Scatter was not modeled.
This resulted in a projection data model Fa = p, where F is
a 34472×7659 system matrix, a is a 7659-element column
vector of spline coefficients, and p is a 34472-element column
vector of modeled projection values. An estimate, â, of spatial
spline coefficients was obtained by minimizing the sum of
squared differences between the measured projections, p∗, and
the modeled projections. The least-squares solution, given by
â = (FTF)−1FTp∗, was obtained by directly inverting the
7659×7659 matrix FTF, where the superscript “T” denotes
the matrix transpose. Using a dual 2.5 GHz PowerPC G5
Macintosh and MATLAB software, the matrix inversion took
about 2.9 min. Post-reconstruction smoothing was performed in
the transverse plane with a separable 3×3 filter that smoothed
spline coefficients with a [1/4 1/2 1/4] kernel first along the x-
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Fig. 8. Reconstructed SPECT images for three transverse slices of a 99mTc-sestamibi cardiac SPECT/CT patient study. The middle row corresponds to the
mid-ventricular slice shown in Figs. 5 and 7. The left and middle columns show images obtained with use of higher-resolution and lower-resolution B-splines,
respectively. The right column shows images obtained with use of a multiresolution basis that has higher resolution in the heart volume (outlined by boxes) and
lower resolution elsewhere in the body. The colormap for all images is the same as that for Fig. 7.

axis and then along the y-axis. The left columns of Figs. 8 and 9
show the reconstructed images. Excessive noise and artifacts
are evident and are probably due to having only 72 angular
samples and 64 lateral samples [8].

For the lower-resolution spatial basis, the 2201 columns of
the system matrix F were obtained by taking linear combi-
nations of the columns of the system matrix for the higher-
resolution basis. Inversion of 2201×2201 matrix FTF took
only about 5 sec. No post-reconstruction smoothing was per-
formed. The middle columns of Figs. 8 and 9 show the
reconstructed images, which have reduced noise and artifacts
compared to the higher-resolution images.

For the multiresolution spatial basis, the 2626 columns of
the system matrix F were obtained by replacing 180 columns
(corresponding to a 6×6×5 array of lower-resolution splines
spanning the heart volume) of the lower-resolution system
matrix with 605 columns (corresponding to an 11×11×5 array
of higher-resolution splines) of the higher-resolution system

matrix. System matrix columns for higher-resolution splines
adjacent to the boundary between higher and lower resolution
were adjusted to provide a smooth transition (dashed lines in
Fig. 6). Inversion of 2626×2626 matrix FTF took only about
8 sec. Post-reconstruction smoothing in the transverse plane
was performed only on higher-resolution spline coefficients
with a separable 3×3 filter that smoothed with a [1/4 1/2 1/4]
kernel first along the x-axis and then along the y-axis. The
right columns of Figs. 8 and 9 show the reconstructed images,
which have reduced noise and artifacts compared to the higher-
resolution images and better myocardial resolution than the
lower-resolution images.

IV. FUTURE DIRECTIONS

Encouraged by these results, we are using multiresolu-
tion spatial B-splines to analyze dynamic SPECT data from
rest/stress cardiac patient studies using methods similar to those
which we reported in [9]–[11]. Future work includes implemen-
tation of spatial modeling with tri-quadratic B-splines, which
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Fig. 9. Zoomed heart images for volume outlined by boxes in images in right column of Fig. 8. The colormap for all images is the same as that for Fig. 7.

are smoother and more circularly symmetric than trilinear B-
splines. We are also investigating the use of spatial B-splines
for reconstruction based on penalized weighted least-squares
minimization or iterative maximization of Poisson likelihood.
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